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EXTENSION OF OVSYANNIKOV’S ANALYTICAL SOLUTIONS

TO TRANSONIC FLOWS

UDC 533K. V. Kurmaeva and S. S. Titov

The solution of the equation of the velocity potential of a steady axisymmetric ideal-gas flow in the
neighborhood of a given point at the axis of symmetry in the form of a double series in powers of the
distance to the axis of symmetry and its logarithm is considered. Recurrent chains of equations with
arbitrariness in two analytical functions of the streamwise variable are obtained for coefficients of
the series. Convergence of the constructed series is proved by the method of special majorants. The
theorem of existence and uniqueness of the solution of the initial-boundary problem for this nonlinear
differential equation in partial derivatives with a singularity at the axis of symmetry is obtained as
an analog of Kovalevskaya’s and Ovsyannikov’s theorems.

Key words: transonic flow, gas dynamics, nozzle, Ovsyannikov’s theorem, Kovalevskaya’s theo-
rem, series, convergence.

Introduction. Ovsyannikov [1] proved an analog of Kovalevskaya’s theorem, which justifies the use of series
in powers of the distance to the axis of symmetry in the inverse problem of gas flows in axisymmetric nozzles. The
arbitrariness of the solution of this problem is one analytical function of the streamwise variable (gas velocity at
the axis of symmetry). As the equation considered is a second-order equation, the general solution should contain
another arbitrary function, which could also be prescribed at the nozzle centerline. Ovsyannikov assumed that this
hypothetical function was zero to avoid the singularity at the centerline and consider the neighborhood of the sonic
line. In this case, the sought potential of the moving gas is the solution of the characteristic Cauchy problem; the
theory of its solution in the form of series in powers of the characteristic variable (in our case, r) was also developed
in [2–6, 8].

Titov [9] considered the solution of an axisymmetric problem of a steady transonic flow around slender
bodies with the use of logarithmic series. This method is used in the present paper to solve the problem of local
construction of solutions of the equation for the velocity potential ϕ of steady motion of an ideal gas. The solution
is constructed in the neighborhood of the axis of symmetry of the flow, because the standard formulation implies
solving the inverse problem of nozzle flows [10], where the gas velocity is set at the nozzle centerline and then the
flow parameters and the nozzle shape are determined. The solution of the equation is constructed in the form
of a double series in power of r and ln r (or in fractional powers of r) in the neighborhood r = 0, z = z0 [7,
10, 11]. Recurrent chains of equations are obtained for coefficients of the series. The convergence of the resultant
series is proved by the method of special majorants. The theorem of existence and uniqueness of the solution for
this nonlinear differential equation in partial derivatives with a singularity is obtained [11]. If ϕr = 0 for r = 0,
then the solution is an analytical function represented as a series in powers of the characteristic variable r [8]; the
convergence of this series can be proved by Ovsyannikov’s method [1, 10]. If ϕr �= 0 for r = 0, then non-analytical
terms containing ln r and a second arbitrary function appear in the series [11]. From the mathematical viewpoint,
it is necessary to find the second arbitrary function of the streamwise variable. Indeed, if we introduce the second
arbitrary function at the axis of symmetry, which “governs” the nonzero transverse derivative ϕr as r → 0, then,
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according to Ovsyannikov’s theorem [1], a singularity should arise at the axis of symmetry (r = 0): the derivative ϕr

turns to infinity, in contrast to the solution of the standard characteristic Cauchy problem [3, 7, 8]. The singularity
is identified by determining such a power of r for which the derivative multiplied by this power would not tend to
infinity. In the present work, we found a value of ε, such that

lim
r→0

rεϕr = ᾱ(z),

where ᾱ(z) is an arbitrary analytical function of the variable z. In the case considered, we obtain ε = (γ−1)/(γ+1),
which is justified by proving the convergence of the asymptotic series constructed. The potential ϕ remains an
analytical function of the variables r and z for small r other than zero. The problem posed can be called the
generalized Cauchy problem. It turned out that this generalized Cauchy problem in our case has a solution, namely,
for small r, the function ϕ(r, z) can be asymptotically presented as

ϕ ∼ ϕ0 = α(z)rδ + β(z),

where δ = 2/(γ + 1). Hence, ᾱ(z) = δα(z).
The solution ϕ0 found can be naturally called the generalized initial data for the Cauchy problem being

solved. Moreover, it turned out that ϕ0 can be considered as the zero coefficient of the logarithmic series converging
for small positive r. It should be noted that the arbitrariness of functions being prescribed determines a whole class
of analytical solutions of the equation considered. It is this phenomenon that is described in the present paper.

Formulation of the Problem. The equation for the velocity potential Φ of steady motion of a polytropic
gas has the form

∑

ik

(1 − δik)ΦxiΦxk
Φxixk

−
∑

i

(Θ − Φ2
xi

)Φxixi = 0. (1)

Here Φ = Φ(x1, x2, x3) (xi are the Cartesian coordinates) and

Θ = (γ − 1)
(
K − 1

2

∑

i

Φ2
xi

)
, (2)

where Θ is the velocity of sound squared, K > 0, K = const, and γ is the ratio of specific heats; i, k = 1, 2, 3.
In the axisymmetric case, we have

x3 = z, r =
√
x2

1 + x2
2, Φ = Φ(r, z). (3)

From Eqs. (1) and (2), we derive the equation

2ΦrΦzΦrz + (Φ2
z − Θ)Φzz − Θ(Φrr + Φr/r) + Φ2

rΦrr = 0, (4)

and then, from Eqs. (2), (3), we obtain

Θ = (γ − 1)[K − Φ2
r/2 − Φ2

z/2]. (5)

Construction of the Logarithmic Series. Now we construct the solution Φ of Eq. (4) in the form of a
series

Φ = ϕ(ρ, r, z), ρ = ln r; (6)

ϕ =
∞∑

n=0

ϕn(ρ, z)rn. (7)

By virtue of Eq. (6), Eqs. (4) and (5) are transformed to

2ϕz(ϕρ/r + ϕr)(ϕρz/r + ϕrz) + ϕzz [(γ + 1)ϕ2
z/2 + (γ − 1)(ϕρ/r + ϕr)2/2 − (γ − 1)K]

+ (γ − 1)[−K + ϕ2
z/2 + (ϕρ/r + ϕr)2/2][ϕrr + 2ϕrρ/r + ϕr/r + ϕρρ/r

2]

+ (ϕρ/r + ϕr)2[ϕrr + 2ϕrρ/r + (ϕρρ − ϕρ)/r2] = 0. (8)
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Multiplying Eq. (8) by r4, we transform this equation to

(rϕr + ϕρ)2[(γ + 1)(r2ϕrr + 2rϕrρ + ϕρρ)/2 + (γ − 1)rϕr/2 − ϕρ]

= (γ − 1)(K − ϕ2
z/2)r2[r2ϕrr + 2rϕrρ + rϕr + ϕρρ] − 2r2ϕz(rϕr + ϕρ)(rϕrz + ϕρz)

− r2ϕzz [(γ + 1)ϕ2
zr

2/2 − (γ − 1)r2K + (γ − 1)(rϕr + ϕρ)2/2]. (9)

Substituting Eqs. (6) and (7) into Eq. (9), we obtain the following equation for n = 0 (the prime indicates the
derivative with respect to ρ):

(ϕ′
0)

2[(γ + 1)ϕ′′
0/2 − ϕ′

0] = 0. (10)

If ϕ′
0 = 0 in Eq. (10), we have a traditional power series for the potential; the convergence of this series in

the neighborhood of the centerline was proved in Ovsyannikov’s classical paper [1]. However, if ϕ′
0 �= 0 in Eq. (10),

the equality of the second term to zero yields

ϕ′
0 = e2ρ/(γ+1) α̃(z),

ϕ0(ρ, z) = α(z) e2ρ/(γ+1) +β(z) = α(z)r2/(γ+1) + β(z).
(11)

Thus, the order of the zero approximation in Eq. (7) depends on the ratio of specific heats γ:

ϕ0 = α(z)r3/4 + β(z) for γ = 5/3; (12)

ϕ0 = α(z)r5/6 + β(z) for γ = 7/5; (13)

ϕ0 = α(z)
√
r + β(z) for γ = 3; (14)

in all cases with γ > 1 and α(z) = 0, the value of gas velocity at the axis of symmetry r = 0 coincides with β′.
Collecting formally terms at rn with n > 0, after substituting series (6), (7) into (9), we obtain the nth

equation of the system for the series coefficients

2ϕ′
0ϕn

[γ + 1
2

ϕ′′
0 − ϕ′

0

]
+ (ϕ′

0)
2
[γ + 1

2
(n(n− 1)ϕn + 2nϕ′

n + ϕ′′
n)

+
γ − 1

2
nϕn − ϕ′

n

]
= Fn(z, ρ), (15)

where

Fn(z, ρ) = −
∑

k+l+m=n
0≤k,l,m<n

(kϕk + ϕ′
k)(lϕl + ϕ′

l)

×
[γ + 1

2
(m(m− 1)ϕm + 2mϕ′

m + ϕ′′
m) +

γ − 1
2

mϕm − ϕ′
m

]

+ (γ − 1)K[p2ϕp + 2pϕ′
p + ϕ′′

p ] − γ − 1
2

∑

k+l+m=p

ϕ̇kϕ̇l[m2ϕm + 2mϕ′
m + ϕ′′

m]

− 2
∑

k+l+m=p

ϕ̇k(lϕl + ϕ′
l)(mϕ̇m + ϕ̇′

m) + (γ − 1)Kϕ̈n−4

−
∑

k+l+m=p

ϕ̈k

[γ + 1
2

ϕ̇l−1ϕ̇m−1 +
γ − 1

2
(lϕl + ϕ′

l)(mϕm + ϕ′
m)

]
. (16)

Here p = n− 2 and the dot over the symbol indicates the derivative with respect to z.
Equation (15) can be rewritten as

Fn(ϕ0, ϕ1, . . . , ϕn−1) =
γ + 1

2
(ϕ′

0)
2
[
ϕ′′

n +
(
2n− 2

γ + 1

)
ϕ′

n + n
(
n− 2

γ + 1

)
ϕn

]
. (17)
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Hence, for ϕ′
0 �= 0, we have

ϕn =
γ + 1

2
e−nρ

∫
enρ Gn(ρ, z) dρ− γ + 1

2
e−(n−2/(γ+1))ρ

∫
e(n−2/(γ+1))ρGn(ρ, z) dρ, (18)

where

Gn(ρ, z) =
2

γ + 1
(ϕ′

0)
−2Fn(ϕ0, ϕ1, . . . , ϕn−1) =

γ + 1
2

e−4ρ/(γ+1)

α2(z)
Fn(ρ, z). (19)

From Eqs. (11), (15), (18), and (19), we obtain the final expression for the solution ϕn of Eq. (17)

ϕn(ρ, z) =
(γ + 1)2

4α2(z)

[
e−nρ

ρ∫

−∞
Fn(τ, z) e(n−4/(γ+1))τ dτ − e−(n−2/(γ+1))ρ

ρ∫

−∞
Fn(τ, z) e(n−6/(γ+1))τ dτ

]
(20)

without appearance of inessential constants of integration and with convergence of both integrals. This can be
explained as follows: if, in each ϕn, we identify an arbitrary constant

Cn(z) e−nρ −Cn(z) e−(n−2/(γ+1))ρ = Cn(z) e−nρ(1 − e2ρ/(γ+1)),

then, the solution acquires an arbitrary term in the form of a series
∞∑

n=0

Cn(z) e−nρ(1− e2ρ/(γ+1))rn =
∞∑

n=0

Cn(z)r−n(1− e2ρ/(γ+1))rn =
∞∑

n=0

Cn(z)(1− e2ρ/(γ+1)) = (1− e2ρ/(γ+1))C(z).

This circumstance can be considered as addition to ϕ0 of an arbitrary function (1 − e2ρ/(γ+1))C(z), which can
be considered as inessential, because the term C(z) is included into the function β(z), and (−1) e2ρ/(γ+1) C(z) is
included into the function α(z).

Structure of Coefficients. With the use of formulas (15), (16), and (20), we can now refine the orders of
the terms of series (7). Namely, by induction with allowance for (11), we obtain that, for 0 � k < n, the maximum
power of r included into ϕk, ϕ′

k, and ϕ′′
k, which is also the index ρ in the exponent, equals γk. With allowance

for Eqs. (16) and (20), we can consider γk as an arithmetic progression, γk = kδ + 2/(γ + 1). Then, by means of
recurrent estimates, we find that the maximum power of r included into ϕn is γn = nδ+ 2/(γ + 1). No constraints
are imposed on the value of δ; therefore, with allowance for Eqs. (15) and (20), we can assume that δ = 2γ0.
Consecutively analyzing the coefficients in Eqs. (7) and (15), we can state that ϕn = 0 for odd n, and series (6),
(7) is written in a particular form for even n as

ϕ(r, z) =
∞∑

n=0

r2n
l∑

k=−1

λn,k(z) e−kδρ,

where

l =
{
n− 1 for n ≥ 1,

0 for n = 0,
δ =

2
γ + 1

, (21)

or

ϕn = λn,−1(z) eδρ +λn,0(z) e0·δρ +
n−1∑

k=1

λn,k(z) e−kδρ .

If the coefficients ϕn(z, ρ) are consecutively calculated by Eqs. (16) and (20), the formulas rapidly become
very cumbersome with increasing n:

n = 0, ϕ0(ρ, z) = α(z) e2ρ/(γ+1) +β(z); (22)

n = 1, F1 =
γ + 1

2
(ϕ′

0)
2
[
ϕ′′

1 +
(
2 − 2

γ + 1

)
ϕ′

1 +
(
1 − 2

γ + 1

)
ϕ1

]
= 0.

To avoid appearance of new exponents, we assume that

ϕ1 = 0. (23)
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Transforming Eq. (16), we can write

Fn(z, ρ) = −
∑

k+l+m=n
0≤k,l,m<n

(kϕk + ϕ′
k)(lϕl + ϕ′

l)
γ + 1

2
(ϕ′′

m + (2m− δ)ϕ′
m +m(m− δ)ϕm)

+(γ − 1)K[p2ϕp + 2pϕ′
p + ϕ′′

p ] − γ − 1
2

∑

k+l+m=p

ϕ̇kϕ̇l[m2ϕm + 2mϕ′
m + ϕ′′

m]

− 2
∑

k+l+m=p

ϕ̇k(lϕl + ϕ′
l)(mϕ̇m + ϕ̇′

m) + (γ − 1)Kϕ̈n−4

−
∑

k+l+m=p

ϕ̈k

[γ + 1
2

ϕ̇l−1ϕ̇m−1 +
γ − 1

2
(lϕl + ϕ′

l)(mϕm + ϕ′
m)

]
.

Then, for n = 2, we have

F2 = (γ − 1)K(ϕ′′
0) − γ − 1

2
ϕ̇0ϕ̇0ϕ

′′
0 − 2ϕ̇0ϕ

′
0ϕ̇0

′ − ϕ̈0
γ − 1

2
(ϕ′

0)
2

= (γ − 1)Kα
( 2
γ + 1

)2

e2ρ/(γ+1) −γ − 1
2

α
( 2
γ + 1

)2

e2ρ/(γ+1)[α̇ e2ρ/(γ+1) +β̇]2

− 2α̇
2

γ + 1
e2ρ/(γ+1) 2

γ + 1
α e2ρ/(γ+1)[α̇ e2ρ/(γ+1) +β̇]

− [α̈ e2ρ/(γ+1) +β̈]
γ − 1

2
α2

( 2
γ + 1

)2

e4ρ/(γ+1)

=
4K(γ − 1)
(γ + 1)2

α eδρ −2(γ − 1)
(γ + 1)2

α[(β̇)2 eδρ +2α̇β̇ e2δρ +(α̇)2 e3δρ]

− 8
(γ + 1)2

αα̇β̇ e2δρ − 8
(γ + 1)2

α(α̇)2 e3δρ −2(γ − 1)
(γ + 1)2

α2[β̈ e2δρ +α̈ e3δρ] =
[4K(γ − 1)

(γ + 1)2
α− 2(γ − 1)

(γ + 1)2
α(β̇)2

]
eδρ

−
[4(γ − 1)
(γ + 1)2

αα̇β̇ +
8

(γ + 1)2
αα̇β̇ +

2(γ − 1)
(γ + 1)2

α2β̈
]
e2δρ

−
[2(γ − 1)
(γ + 1)2

α(α̇)2 +
8

(γ + 1)2
α(α̇)2 +

2(γ − 1)
(γ + 1)2

α2α̈
]
e3δρ

=
2

γ + 1

([2K(γ − 1)
(γ + 1)

α− γ − 1
γ + 1

α(β̇)2
]
eδρ −

[2(γ − 1)
γ + 1

αα̇β̇ +
4

γ + 1
αα̇β̇ +

γ − 1
γ + 1

α2β̈
]
e2δρ

−
[γ − 1
γ + 1

α(α̇)2 +
4

γ + 1
α(α̇)2 +

γ − 1
γ + 1

α2α̈
]
e3δρ

)
=

2
γ + 1

[F21 eδρ +F22 e2δρ +F23 e3δρ],

where

F21 =
2K(γ − 1)
γ + 1

α− γ − 1
γ + 1

α(β̇)2;

F22 =
2(γ − 1)
γ + 1

αα̇β̇ +
4

γ + 1
αα̇β̇ +

γ − 1
γ + 1

α2β̈;

F23 =
γ − 1
γ + 1

α(α̇)2 +
4

γ + 1
α(α̇)2 +

γ − 1
γ + 1

α2α̈.
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Then, taking into account Eq. (20), we obtain

ϕ2 =
γ + 1
2α2

(
e−2ρ

ρ∫

−∞
[F21 e(2−δ)ρ +F22 e2ρ +F23 e(2+δ)ρ] dρ

− e−(2−δ)ρ

ρ∫

−∞
[F21 e(2−2δ)ρ +F22 e(2−δ)ρ +F23 e2ρ] dρ

)

=
γ + 1
2α2

([ F21

2 − δ
e−δρ +

F22

2
e0ρ +

F23

2 + δ
eδρ

]
−

[ F21

2(1 − δ)
e−δρ +

F22

2 − δ
e0ρ +

F23

2
eδρ

])

=
1

2α2

( F21 e−δρ

(δ − 2)(δ − 1)
+
F22 e0ρ

δ − 2
− F23 eδρ

δ + 2

)
.

Convergence of the Logarithmic Series. Let the functions α(z) and β(z) be analytical in the neighbor-
hood of the point z = z0. We prove the convergence of series (7) for small r in this neighborhood.

As the functions α(z) and β(z) are analytical, there exist positive constantsM and R, such that the following
inequalities are valid for all t ≥ 0:

∣∣∣
∂tα(z)
t! ∂zt

∣∣∣
z=z0

≤ M ′

Rt
,

∣∣∣
∂tβ(z)
t! ∂zt

∣∣∣
z=z0

≤ M ′

Rt
,

∣∣∣
∂t−qα−2(z)

(t− q)! ∂zt−q

∣∣∣
z=z0

≤ M ′′

Rt
. (24)

We assume that M = max (M ′, 2M ′,M ′′).
We consider the majorating series for ϕn, in which the absolute values of the coefficients at the exponents

are used:

χn =
l∑

k=−1

|λn,k| e−kδρ .

Here

l =
{
n− 1 for n ≥ 1,

0 for n = 0,
δ =

2
γ + 1

.

Obviously, we have

|ϕn| ≤ χn. (25)

For n = 0, we assume that

χ
[t]
0 = sup

−∞<τ≤ρ

∂tχn(z0, τ)
t! ∂zt

.

Then, in accordance with Eq. (22), we obtain

∂tχ0

∂zt
=
∂tα(z)
∂zt

e2ρ/(γ+1) +
∂tβ(z)
∂zt

.

Taking into account Eq. (24), we estimate χ[t]
0 :

χ
[t]
0 = sup

−∞<τ≤ρ

(∂tα(z)
t! ∂zt

e2ρ/(γ+1) +
∂tβ(z)
t! ∂zt

)
,

χ
[t]
0 ≤ M ′

Rt
sup

−∞<τ≤ρ
(e2ρ/(γ+1) +1) ≤ 2M ′

Rt
≤ M

Rt
.

(26)

For n > 0, we assume that

χ[t]
n (ρ) = sup

−∞<τ≤ρ

(∂tχn(z0, τ)
t! ∂zt

e(an+b)τ
)
. (27)

As ϕn(z, ρ) is the sum of the powers of the exponents, there exists the upper limit in Eq. (27).
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In accordance with Eq. (20), we have

∂tϕn

∂zt
=

(γ + 1)2

4

(
e−nρ

ρ∫

−∞
e(n−4/(γ+1))τ

t∑

q=0

Cq
t

∂qFn(z0, τ)
∂zq

∂t−q

∂zt−q
α−2(z) dτ

− e−(n−2/(γ+1))ρ

ρ∫

−∞
e(n−6/(γ+1))τ

t∑

q=0

Cq
t

∂qFn(z0, τ)
∂zq

∂t−q

∂zt−q
α−2(z) dτ

)
. (28)

It follows from Eq. (28) that

∂tϕn(z0, ρ)
t! ∂zt

e(an+b)ρ =
(γ + 1)2

4

(
e−[n(1−a)−b]ρ

ρ∫

−∞
e[n(1−a)−4/(γ+1)−3b]τ

×
t∑

q=0

Cq
t e(an+3b)τ ∂

qFn(z0, τ)
∂zq

∂t−q

∂zt−q
α−2(z) dτ

− e−[n(1−a)−b−2/(γ+1)]ρ

ρ∫

−∞
e[n(1−a)−6/(γ+1)−3b]τ

t∑

q=0

Cq
t e(an+3b)τ ∂

qFn(z0, τ)
∂zq

∂t−q

∂zt−q
α−2(z) dτ

)

=
(γ + 1)2

4

ρ∫

−∞
(e−[n(1−a)−b]ρ+[n(1−a)−4/(γ+1)−3b]τ − e−[n(1−a)−b−2/(γ+1)]ρ+[n(1−a)−6/(γ+1)−2b]τ)

×
t∑

q=0

Cq
t e(an+3b)τ ∂qFn(z0, τ)

∂zq

∂t−q

∂zt−q
α−2(z) dτ.

Estimating the last equality with allowance for Eqs. (24) and (27), we can use a component-by-component
transformation to obtain an inequality where Xn is obtained by substituting χn into Fn instead of the correspond-
ing ϕn:

∂tχn(z0, ρ)
t!∂zt

e(an+b)ρ ≤ (γ + 1)2

4
M

Rt−q
sup

−∞<τ≤ρ

( t∑

q=0

e(an+3b)τ

q!
∂qXn(z0, τ)

∂zq

)

×
(

e−[n(1−a)−b]ρ

ρ∫

−∞
e[n(1−a)−4/(γ+1)−3b]τ dτ − e−[n(1−a)−b−2/(γ+1)]ρ

ρ∫

−∞
e[n(1−a)−6/(γ+1)−3b]τ dτ

)
.

Integrating, we obtain

∂tχn(z0, ρ)
t! ∂zt

e(an+b)ρ ≤ (γ + 1)2

4
M

Rt−q
sup

−∞<τ≤ρ

( t∑

q=0

e(an+3b)τ

q!
∂qXn(z0, τ)

∂zq

)

×
( e−[n(1−a)−b]ρ

n(1 − a) − 4/(γ + 1) − 3b
e[n(1−a)−4/(γ+1)−3b]τ

∣∣∣
ρ

−∞

− e−[n(1−a)−b−2/(γ+1)]ρ

n(1 − a) − 6/(γ + 1) − 3b
e[n(1−a)−6/(γ+1)−3b]τ

∣∣∣
ρ

−∞

)
=

(γ + 1)2

4
M

Rt−q
e−(4/(γ+1)+2b)ρ 2

γ + 1

× 1
[n(1 − a) − 4/(γ + 1) − 3b][n(1 − a) − 6/(γ + 1) − 3b]

sup
−∞<τ≤ρ

( t∑

q=0

e(an+3b)τ

q!
∂qXn(z0, τ)

∂zq

)
.
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Using the property of monotonicity of the right side, we take the upper limit in terms of ρ ≤ ρ0 ≤ 0 in both sides
of the last inequality and write it as

χ[t]
n (ρ0) ≤ (γ+1)M

2Rt−q

1
[n(1 − a) − 4/(γ+1)−3b][n(1−a)−6/(γ+1)−3b]

sup
−∞<τ≤ρ

( t∑

q=0

e(an+3b)τ

q!
∂qXn(z0, τ)

∂zq

)
. (29)

The form of the dependence χn(ρ) proves the validity of the estimate

|χ′
n(ρ)| ≤ n|χn|,

because 2(n− 1)/(γ + 1) ≤ n, from which we find that the relation (n(1 − γ)− 2)/(γ + 1) ≤ 0 is valid for all n ≥ 0
for γ > 1.

Using the definition of Fn(z, ρ) and differentiating in accordance with Leibnitz’s rule, we rewrite Eq. (29)
in the following form:

χ[t]
n (ρ0) ≤ (γ + 1)M

2Rt−q

1
[n(1 − a) − 4/(γ + 1) − 3b][n(1 − a) − 6/(γ + 1) − 3b]

×
(
8

∑

k+l+m=n

q∑

i=0

i∑

j=0

kχ
[j]
k lχ

[i−j]
l m2χ[q−i]

m + 4(γ − 1)Kp2χ[q]
p

+ 2(γ − 1)
∑

k+l+m=p

q∑

i=0

i∑

j=0

(j + 1)χ[j+1]
k (i− j + 1)χ[i−j+1]

l m2χ[q−i]
m

+ 8
∑

k+l+m=p

q∑

i=0

i∑

j=0

(j + 1)χ[j+1]
k lχ

[i−j]
l m(q − i+ 1)χ[q−i+1]

m + (γ − 1)K(q + 1)(q + 2)χ[q+2]
n−4

+
γ + 1

2

∑

k+l+m=p

q∑

i=0

i∑

j=0

(j + 2)(j + 1)χ[j+2]
k (i− j + 1)χ[i−j+1]

l−1 (q − i+ 1)χ[q−i+1]
m−1

+ 2(γ − 1)
∑

k+l+m=p

q∑

i=0

i∑

j=0

(j + 2)(j + 1)χ[j+2]
k lχ

[i−j]
l mχ[q−i]

m

)
. (30)

The transition from (29) to (30) is justified by the estimate of the parameters a and b. Because of the statements
above, the numbers a and b should satisfy the conditions

b < − 2
γ + 1

, 0 < a < 1 − 6
γ + 1

− 3b, 0 < a < 1 − 4
γ + 1

− 3b,

a+ b > 0, 2a+ b > 0, 1 − 4
γ + 1

− 3b > 0, 1 − 6
γ + 1

− 3b > 0.

We transform this system to

b < − 2
γ + 1

, 0 < a < 1 − 6
γ + 1

− 3b, a+ b > 0, 1 − 6
γ + 1

− 3b > 0.

To solve this system, we assume that b = −2c/(γ + 1), where c > 1, and estimate the inequality

0 < a < 1 − 6
γ + 1

− 3b ⇒ 0 < a < 1 − 6
γ + 1

+
3 · 2c
γ + 1

=
6c− 5 + γ

γ + 1
= amax.

It follows from here that (6c − 5 + γ)/(γ + 1) > 0 for c > 1 and γ > 1, i.e., this inequality is satisfied. We check
satisfaction of the inequality

a > −b ⇒ amax > −b ⇒ 6c− 5 + γ

γ + 1
>

4c
γ + 1

.

Thus, the inequality is satisfied for c > 1 and γ > 1.
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Hence, we can conclude that, for all b ∈ (−∞;−2/(γ + 1)), there is a ∈ (2c/(γ + 1); (γ − 5)/(γ + 1) − 2b)
such that the system has a solution.

We determine ψ[t]
n by the following recursion:

ψ
[t]
0 = M/Rt ≥ χ

[t]
0 , ψ

[t]
1 = 0,

ψ[t]
n =

(γ + 1)M
2Rt−q

A

n(n− 1)

(
8

∑

k+l+m=n

q∑

i=0

i∑

j=0

kψ
[j]
k lψ

[i−j]
l m2ψ[q−i]

m + 4(γ − 1)Kp2ψ[q]
p

+ 2(γ − 1)
∑

k+l+m=p

q∑

i=0

i∑

j=0

(j + 1)ψ[j+1]
k (i− j + 1)ψ[i−j+1]

l m2ψ[q−i]
m

+ 8
∑

k+l+m=p

q∑

i=0

i∑

j=0

(j + 1)ψ[j+1]
k lψ

[i−j]
l m(q − i+ 1)ψ[q−i+1]

m + (γ − 1)K(q + 1)(q + 2)ψ[q+2]
n−4

+
γ + 1

2

∑

k+l+m=p

q∑

i=0

i∑

j=0

(j + 2)(j + 1)ψ[j+2]
k (i− j + 1)ψ[i−j+1]

l−1 (q − i+ 1)ψ[q−i+1]
m−1

+ 2(γ − 1)
∑

k+l+m=p

q∑

i=0

i∑

j=0

(j + 2)(j + 1)ψ[j+2]
k lψ

[i−j]
l mψ[q−i]

m

)
. (31)

A positive value of A exists because

lim
n→∞

n(n− 1)
(n(1 − a) − 4/(γ + 1) − 3b)(n(1 − a) − 6/(γ + 1) − 3b)

=
1

(1 − a)2
.

Comparing Eq. (31) with inequalities (27) and (30), and taking into account the equality χ[t]
1 = 0, we obtain

χ[t]
n (ρ0) ≤ ψ[t]

n ;

for all n, we have t ≥ 0 and ρ0 ≤ 0, since ψ[t]
n ≥ 0. Taking into account Eq. (25), we conclude that

ϕ[t]
n (ρ0) ≤ ψ[t]

n .

We consider the function

Ψ(z, y) =
∞∑

t=0

∞∑

n=0

ψ[t]
n (z − z0)tyn.

According to Eq. (31), this function is the solution of the equation

y2Ψyy = [(γ + 1)MA/(2Rt−q)][8y2Ψ2
y(y

2Ψyy + yΨy)

+ 4(γ − 1)Ky2(y2Ψyy + yΨy) + 2(γ − 1)y2Ψ2
z(y

2Ψyy + yΨy) + 8y2ΨzyΨy

+K(γ − 1)y4Ψzz + (γ + 1)y2Ψzzy
2Ψ2

z/2 + 2(γ − 1)y2Ψzzy
2Ψ2

y].

By cancelling y2 and explicitly expressing Ψyy, we can reduce this equality to an equation of Kovalevskaya’s type
relation

Ψyy =
B(8yΨ3

y + yΨy + 2(γ − 1)Ψ2
zyΨy + 8ΨzyΨyyΨyz)

1 −B(8y2Ψ2
y + 4(γ − 1)Ky2 + 2(γ − 1)y2Ψ2

z)

+
B(K(γ − 1)y2Ψzz + γ+1

2 ΨzzΨ2
z + 2(γ − 1)Ψzzy

2Ψ2
y)

1 −B(8y2Ψ2
y + 4(γ − 1)Ky2 + 2(γ − 1)Ψ2

zy
2)

, (32)
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where B = (γ+1)MA/(2Rt−q), with analytical Cauchy data on the straight line y = 0 [in accordance with Eq. (31)]

Ψ(z, 0) =
MR

R− (z − z0)
=

∞∑

t=0

ψ
[t]
0 z

t; Ψy(z, 0) = 0. (33)

According to Kovalevskaya’s theorem, the function Ψ(z, y) from Eqs. (32) and (33) is analytical in a certain neigh-
borhood of the point z = z0, y = 0; since its coefficients ψ[t]

n majorate ϕ[t]
n , then the series

ϕ(z, y) =
∞∑

t=0

∞∑

n=0

ϕ[t]
n (z − z0)tyn (34)

also converges in this neighborhood.
From Eq. (7) with ρ = ln r, we have

rbϕ(z, r, ρ) =
∞∑

n=0

[
e(an+b)ρ

∞∑

t=0

∂tϕn(z0, ρ)
t! ∂zt

(z − z0)t
]
rn(1−a). (35)

It follows from Eqs. (26), (27), and (35) that series (7) converges in the region of convergence of series (34), where
y = 1−a

√
r, r ≤ eρ0 ≤ 1. Thus, we proved the following theorem.

Theorem 1. The generalized Cauchy problem for Eq. (4) with the generalized initial data (11) has a
solution for all functions α(z) and β(z) analytical in the neighborhood of the point z = z0 in the form of series (7)
with coefficients recurrently calculated by formulas (11), (16), and (20) for all rather small positive r, which is an
analytical function in terms of the variables z and r in this neighborhood.

Physical Meaning. In contrast to [1], where a conventional nozzle is considered, there are singularities in
flows at the axis of symmetry r = 0; the physical meaning of these singularities requires additional research. In
choosing the point z = z0 lying at the line of the transition through the velocity of sound, we obtain a possibility
of constructing an analytical solution in both supersonic and subsonic regions. The series constructed can also be
applied to solve the inverse problem of external flow around axisymmetric bodies: the point z0 is chosen inside the
body or on its surface, and if the region of convergence of the series is rather large, the gas velocity is calculated
in the flow region as well; the shape of the body corresponds to one of the streamlines. This process is similar to
replacement of the body by a distribution of singularities of sources at the axis. The method considered can also
be used to solve an unsteady potential equation.

The authors are grateful to L. V. Ovsyannikov, V. M. Teshukov, and A. N. Kraiko for their attention to this
work, formulating the problem, and useful discussions.
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the Target-Oriented Program for supporting interdisciplinary projects performed together with scientists of the
Siberian and Far-East Divisions of the Russian Academy of Sciences.
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